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Different copies of a repairable machine, or units, often exhibit
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Different copies of a repairable machine, or units, often exhibit different failure rates. If this
heterogeneity is ignored, a statistical model of the time until failure may estimate a spurious
decreasing hazard rate, resulting in incorrect inferences concerning the risk following repair.
This article develops a renewal-proces model that accommodates both heterogeneity across
units and decreasing hazard rates. Failure times for each unit are assumed Weibull, and the
Weibull scale parameter is assumed to vary across units according to a gamma distribution.
The model is illustrated using both Proschan's air-conditioner data and data on a U.S. Navy
radar.
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1. INTRODUCTION There are several possible appro~
nating between heterogeneity and d

Many machines or units are repaired rather than rates. If there is a small number of
replaced after a failure. Often the analysis of such large number of failures, then it m:
units ignores the fact that each machine produces estimate a separate survival model f
several failure times and assumes that, possibly given fitted models for the different unil
some explanatory variables, failure times are inde- compared to assess the amount of
pendent and identically distributed (iid) across units. related approach would be to estir
The purpose of this article is to provide a model that model for all of the units but to incl
relaxes this assumption. abies to identify the individual unit

If failure times across units are assumed iid with- both of these approaches fail if
out justification, heterogeneity across units may in- number of units or if most units have
correctly result in the conclusion that failure times This article develops and estim
have a decreasing hazard rate (Proschan 1963). Sup- model that accommodates both d,
pose that the lifetimes of each unit follow an ex- rates and heterogeneity across units
ponential (),) distribution, but that ), varies across lifetimes of each unit are assumed to
units according to some nondegenerate probability distribution, and the Weibull scale I
distribution. Then the distribution of lifetimes across drawn from a gamma mixing distril
units will exhibit a decreasing hazard rate. Intuitive- bull shape parameter indicates whl
ly, units with the larger ;"s tend to fail first, so the rate for each unit is decreasing, c
average hazard rate of the remaining units tends to increasing. The variance of the gaml
decrease with time. bution indicates the degree of het(

The distinction between a heterogeneous popu- the units.
lation of units and a true decreasing hazard rate can The model developed here is illus
be critical. Consider the difference in the two views different data sets. First, the model i:
for describing the lifetime following repair. If, con- Proschan's (1963) analysis of the
ditional on a unit, each lifetime follows an ex- conditioner data. Second, Kujaw
ponential distribution, then a new or just-repaired (1978) observed that equipment I
unit is no more likely to fail than an old unit. There- versely affected by on-off cycling. 1
fore, there is no increased risk following repair. But, applied to data on a U.S. Navy rad
if each lifetime has a decreasing hazard rate, then to describe failures and to meas\;
repair is followed by a higher risk. In other words, a on-off cycling on radar reliability.
unit that has survived its initial "burn-in" period is We work with repairable systems
less likely to fail than a new or just-repaired unit. the sequence of failure times for e1
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There are several possible approaches to discrimi-
nating between heterogeneity and decreasing hazard
rates. If there is a small number of units each with a
large number of failures, then it may be possible to
estimate a separate survival model for each unit. The
fitted models for the different units could then be
compared to assess the amount of heterogeneity. A
related approach would be to estimate a combined
model for all of the units but to include dummy vari-
ables to identify the individual units. Unfortunately,
both of these approaches fail if there is a large
number of units or if most units have few failures.

This article develops and estimates a statistical
model that accommodates both decreasing hazard
rates and heterogeneity across units. Specifically, the
lifetimes of each unit are assumed to follow a Weibull
distribution, and the Weibull scale parameter is itself
drawn from a gamma mixing distribution. The Wei-
bull shape parameter indicates whether the hazard
rate for each unit is decreasing, constant, or even
increasing. The variance of the gamma mixing distri-
bution indicates the degree of heterogeneity across
the units.

The model developed here is illustrated using two
different data sets. First, the model is used to support
Proschan's (1963) analysis of the well-known air-
conditioner data. Second, Kujawski and Rypka
(1978) observed that equipment reliability is ad-
versely affected by on-off cycling. The model is also
applied to data on a U.S. Navy radar in an attempt
to describe failures and to measure the effect of
on-off cycling on radar reliability.

We work with repairable systems and assume that
the sequence of failure times for each unit forms a

389
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DISTINGU

common in the survival literature (see Cox and
Oakes 1984; Kalbfleisch and Prentice 1980) and can
be tested. Note that the Xjj vector does not include a
leading one for an intercept term. The intercept cor-
responds to II, the mean of the mixing distribution.

To develop the likelihood function for the sample,
assume that censoring is noninformative [but see La-
gakos (1979) for generalizations]; that is, conditional
on a value of Aj, a complete observation (djj = 1)

contributes a term f(tjj I A,) to the likelihood function.
A censored observation (djj = 0) contributes a term
1 - F(tjj I A,), where F(tlj I A,) is the Weibull cumula-
tive distribution function. Therefore, conditional on
)'j' the total contribution of the ith unit to the likeli-
hood function is equal to

min [f(t'j I )." y, fJ)]di)
j=l

LAA.i,y,8)=

x [1 - F(tljIAI' ')I, O)]l-diJ, (4)

The unconditional contribution of the ith unit is ob-
tained by integrating out AI:

L,{IX, p, y, £J) = 1'" L,{J., y, £J)g(J.) dJ., (5)

where g(J.) is the gamma mixing distribution in Equa-
tion (3). Finally, the total likelihood function for the
sample equals the product of the contributions of all
n units;

n
L(a, II, y, 8) = n Lt<a, II, y, 8)

1= 1
" 1 '"

=jQ 0

Substituting the Weibull and gamma distributions
into Equation (6) and performing the integration
yields

L(IX, p, y, 0) = Ii G(IX + di+)
(-2- )«

i=l G(IX) P +t(Y)i+

( Y
)"1+ ( m x ~ exp 0 ~ diJXiJ ) Om; ry-1)"ij

1+ °-
1 iJ'

J- J=l

where dj + = Lj~ 1 djj, t\~ = Lj~ 1 t& exp(xjj 8), and
G( ) again denotes the gamma function. Precisely
the same likelihood function was obtained by Wild
(1983) as his model 2. He, however, did not use this
model to distinguish heterogeneity from decreasing
hazard rates. Instead, he was primarily concerned
with the lack of efficiency in estimates of regression
parameters when the mixing distribution is unspeci-
fied. Crowder (1985) worked with a similar model,
except that he restricted the units to have equal num-
bers of failure times (mj = m for all i). Finally, John-

son and Kotz (1972, pp. 288-289) discussed this dis-
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tribution and referred to it as the multivariate Burr
distribution. The identifiability of the parameters of
the model follows from results of Elber and Ritter
(1982) and Heckman and Singer (1984).

Several special cases are contained in (7). If y = I,
(7) is the likelihood for a gamma mixture (over units)
of exponentials, whereas if the gamma mixing distri-
bution is degenerate, (7) reduces to a Weibull likeli-
hood. Thus the two "extreme" causes of apparent
decreasing hazard rates are allowed-solely due to
heterogeneity or not at all due to heterogeneity. For
completeness, we note that if units are not repairable
(mj = I), (7) reduces to the model introduced by
Dubey (1968) and also considered by Lancaster
(1979) and Lancaster and Nickell (1980). If a further
assumption is made that y = I, (7) reduces to a
Pareto likelihood with explanatory variables.

4. ESTIMATION AND MODEL CHECKING

The logarithm of Equation (7), or log-likelihood,
may be maximized numerically to yield estimates of
the parameters fl., (12, y, and fJ. Newton's method may
be used to set the gradient of the log-likelihood to 0,
or one of the quasi-Newton variations (see, e.g.,
Dennis and Schnabel 1983) that approximate the
Hessian of the log-likelihood may be more con-
venient. Initial guesses of fl., fJ, and y may be obtained
from a Weibull regression. An initial guess of (1 = fl.
corresponds to an exponential mixing distribution
and has worked well for us.

The proportional-hazard-rate assumption may be
examined using the procedure suggested by Kay
(1977) (see also Cox and Oakes 1984, pp. 112-113;
Kalbfleisch and Prentice 1980, pp. 89-98). For binary
explanatory variables, Kay's approach was to dichot-
omize the sample in turn for each variable and to
estimate two models, one for each subsample. The
proportional-hazard-rate assumption is met if the
two estimated hazard rates are proportional. Under
the Weibull baseline hazard assumed in this article,
proportionality will be reflected by equal values of y
in the two subsamples. Continuous explanatory vari-
ables can be tested in analogous fashion by using
"1ow" versus "high" values to define the subsamples.

To assess the assumption of a gamma mixing dis-
tribution, one could estimate separate Aj'S for each
unit using a single Weibull regression with dummy
variables for each unit and then compare these esti-
mates to a gamma distribution. There may be diffi-
culties, however, if there is a large number of units,
each with few failures, and it may be necessary to
include only units with a "reasonable" number of
failures. If there are only a few units with many fail-
uees, the preceding technique may be sufficient to
model the data.

One common technique to assess overall goodness

TECHNOMETRICS, NOVEMBER 1988, VOL. 30, NO.4
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Table 1. Maximum Likelihood Estimates for the Proschan Data

Parameters
Log-

Model }' E(A.) Var(A.) likelihood

Exponential - .011 - -1,178.8
(.001)

Weibull .925 .016 - -1,177.6

(.057) (.005)

Gamma mixture - .011 1.2 x 10-5 -1,174.9
of exponentials (.001) 2.7 x 10-6

Gamma mixture .975 .012 1.4 x 10-5 -1,174.8
of Weibulls (.020) (.001) 3.0 x 10-6

NOTE Asymptotic standard errors appear in parentheses

of fit uses generalized residuals (see Cox and Oakes
1984, pp. 88-89; Kay 1977). The basic idea follows
from the result that if a continuous random variable
T has distribution function F, then F(T) has a uni-
form distribution. Therefore, if F is estimated by F,
the collection of transformed data, F(t 1)' ..., F(tn),
should roughly behave like an iid sample from a uni-
form distribution. In practice, some observations will
be right-censored and so will be the corresponding
F(tJ. A Kaplan-Meier survival-curve estimate based
on the transformed data should look like a uniform
survival curve-that is, a line connecting (1, 0) and (0,
1) if the model fits. The generalized residuals can also
be grouped according to explanatory variables and
examined to assess their dependence on the explana-
tory variables.

Although this technique is not directly applicable
when there is heterogeneity across units, it can be
easily modified using a suggestion of Lawless (1987).
Recall that, conditional on Ai' F(T i1 I AJ, ..., F(1;mi I
;.J are iid uniform. Therefore, the preceding tech-
nique can be applied as long as Ai is estimated in
addition to the parameters. A simple estimate of Ai is
given by the posterior mean

£[;"il(ti1' di1)' ..., (tim,' dim,)] = (di+ + 1X)/(tjYJ + ,8),

where IX and fJ are parameters of the gamma mixing
distribution.

Gamma mixture
of exponentials

5. PROSCHAN DATA

As our first example, we apply the proposed statis-
tical model to the data reported by Proschan (1963).
He collected data on service hours between failures
for air-conditioning systems on 13 Boeing 720 jet
aircraft. He did not formulate an explicit model. In-
stead, he used hypothesis-testing procedures to arrive
at two conclusions. First, if the data on all 13 aircraft
are pooled together, the distribution function of the
pooled data exhibits a decreasing hazard rate.
Second, each individual aircraft exhibits a constant
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hazard rate, although the constant hazards may vary
across aircraft.

Prosch an's (1963) hypothesis-testing procedures
lead to the conclusion that hazard rates are constant
within aircraft but heterogeneous across aircraft.
The.se procedures do not seem flexible enough, how-
ever, to accommodate a situation in which hazard
rates are both nonconstant within aircraft and het-
erogeneous across aircraft. By contrast, the statistical
model developed in this article does allow both ef-
fects, the nonconstant hazard rate being measured by
the parameter y and heterogeneity being measured
by (12.

Several other authors have analyzed Proschan's
data. For example, Ascher and Feingold (1984)
argued that these data may not be consistent with a
renewal process. To illustrate the proposed model,
however, we will maintain the renewal assumption.
The results of estimating several nested models cul-
minating in (7) appear in Table 1.

First, a simple exponential model was estimated.
Next, the exponential model was generalized to a
Weibull model, but heterogeneity across aircraft was
still not allowed (i.e., (12 was constrained to 0). The
estimated Weibull shape parameter, y, is less than 1.0,
giving some evidence of a decreasing hazard. The
estimate of y, however, lies within two standard
errors of 1.0, and the improvement in log-likelihood
is not significant.

Next, a gamma mixture (across units) of ex-
ponential distributions was estimated. Both the Wald
test statistic (i.e., the parameter estimate divided by
its estimated asymptotic standard error) and the like-
lihood ratio test imply that (12 is significantly larger
than O. Both test procedures are conservative under
the null hypothesis, where (12 is on the boundary of
the parameter space. Chernoff (1954) demonstrated
that the likelihood ratio statistic has an asymptotic
distribution that is chi-squared with probability .5
and is zero with probability .5. Moran (1971) demon-
strated that the Wald statistic has an asymptotic dis-
tribution that is standard normal with probability .5
and is zero with probability .5. Therefore, tire mixture
of exponentials seems to explain the data better than
the homogeneous Weibull model.

Finally, the full gamma mixture of Weibull distri-
butions was estimated. The estimate of (12 is essen-
tially unchanged from the previous case, but the esti-
mate of y is within two standard errors of 1.0. More-
over, the log-likelihood is virtually identical to that
of the simpler mixture of exponentials. Therefore, it
appears that the mixture of exponentials provides the
best summarization of the data of the four models
considered.

These results support Proschan's (1963) major
findings. For other data sets in which both non-

Oakes
follows
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Days since 1-80

Figure 1. Usage History of a Single Radar. Horizontal line
segments represent time spent in a state; vertical line segments
represent transitions between states.

constant hazards and heterogeneity are present, how-
ever, the benefits of the statistical model will be much
more pronounced. An example of such a data set is
given in the next section.

NAVY DATA6.

Data were collected on a U.S. Navy radar for the
period 1980-1985. Normal use of these radars in-
volves intermittently turning the radar off and on for
a variety of reasons, including operational concerns
and preventive maintenance. Occasionally, the radars
fail and are then repaired. Sixty-three radars were
observed. There were 6,019 energized (on) periods,
for an average of 96 per radar. Of these periods,
4,565 or 76% ended in censoring-either the ma-
chine was turned off or data recording stopped on a
particular unit. Figure 1 provides an actual usage
history for one of the radars. Thick solid black lines
indicate that the radar switched frequently between
different states.

Table 2. Sample Statistics and Explanatory Variables for
Navy Data

Variable Mean

1,030.4

397.0

22.7

4.20

11.04
.33
.85

2.20
20.91

Days of observation
per machine

Days energized
per machine

Failures per machine

Days since energized

Days since repair
First "on" since repair
On-off cycles per day
Calendar year
Cumulative failures
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Several explanatory variables that were thought
likely to affect failure were measured. Some summary
statistics are given in Table 2. Note that the variables
are measured at the start of each energized period.

The first three rows of Table 2 describe overall
usage and reliability of the radars. Radars were ob-
served for an average of almost three years, and
about 40% of that time they were energized (the re-
maining time the radars were either off or broken).
The radars averaged about 23 failures per machine.
The fourth row of Table 2 indicates that failure or
censoring occurred on average 4.2 days after being
energized. The last five rows describe explanatory
variables. The first three describe aspects of the
"local" history of the unit, and the last two describe
aspects of the "global" history. Specifically, the first
measures operating time since repair-that is, the
number of days the machine was operating from the
end of the last repair until the start of the current
"on" period. The second is set to 1 for the first "on"
period following repair and is set to 0 otherwise. The
third explanatory variable measures on-off cycles per
day since the last repair. This covariate is set to 0 for
the first "on" period following repair. The fourth rep-
resents calendar year and is coded as 0 for 1980, 1 for
1981, and so forth. The fifth measures cumulative
failures since the beginning of the data set, January
1980.

Preliminary analysis indicated that the hazard rate
decreased with both the time since repair and the
time since a radar was energized (turned on). In
effect, there are two possible time scales for the
hazard function. The problem of multiple time scales
was discussed by Farewell and Cox (1979) and Pren-
tice, Williams, and Peterson (1981). The solution of
Prentice et al. was essentially to use one of the time
scales as the time index t in the model and enter the
other time scale as an explanatory variable. Our ap-
proach is to use time since energized as the time scale
and time since repair as a time-fixed explanatory
variable. This formulation allows the hazard to vary
as a function of both time since energized and time
since repair.

Since time since energized is used as the time
index, if there were no explanatory variables we
would be assuming that each time a radar is turned
on the process renews itself. This is a strong assump-
tion. Use of the explanatory variables, especially time
since repair, calendar year, and cumulative failures,
can be viewed as ways of weakening this assumption.

Table 3 contains estimates of the Weibull regres-
sion model assuming no heterogeneity. Most of the
explanatory variables are statistically significant. The
units are more likely to fail during the first "on"
period following repair, and generally failure is more
likely the more recent a repair has been. Previous
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Standard
deviation

444.9

2173

13.3

7.07

17.19
.47

1.19
1.40

15.72



394

Table 3. Maximum Likelihood Estimates for the
Weibull Regression

Standard
Variable Parameter e"or

Jl ..114 .010
20" --

JI

Days since repair
First "on" since repair

On-off cycles per day

Calendar year

Cumulative failures

Log-likelihood

on-off cycling does not appear to be important.
There is a downward trend in the hazard rate over
the sample period, 1980-1985; however, the more
failures a particular machine has had, the more likely
it is to fail again. Of particular interest is the estimate
of y. Its value of .764 indicates a sharply decreasing
hazard rate. Because the time scale is time since ener-
gized, this implies that failures are more likely right
after a radar is energized. It seems that on-off cycling
has a harmful effect on the failure rate. As suggested
by this article, however, one must be suspicious of
decreasing hazard rates in the face of potential het-
erogeneity.

l&[GlO[

Upper End Point
of Intc1-val

Figure 2. Histogram of Estimated 5.;'s and the Predicted Number of X;'s Under a Gamma Distribution. Estimated X;'s are based on a

Weibull regression with explanatory variables used in Table 3 and intercept dummies for the 53 radars with at least 10 failures These

~;'s were then treated as a sample from a gamma distribution and Ii = . 11 and 62 = .0018 estimated. These estimates provide the basis

for the predicted number of 5.;'s.
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The presence of heterogeneity among units can be
examined using the generalized residuals. The un-
censored F(tj)'s, if there is no heterogeneity, should
not differ across units. An analysis of variance on
these F(tJs provided an F statistic with a value of
39.0 on 63 and 1,391 df, providing strong evidence
that heterogeneity among units is present. This raises
the possibility that the apparent decreasing hazard
on time since energized is at least partially due to
heterogeneity. To see whether a gamma mixing dis-
tribution was a reasonable way to model the hetero-
geneity, a Weibull model with the preceding explana-
tory variables and intercept dummies for individual
radars was estimated. Only radars with at least 10
failures were included. These 53 J.;,s were treated as
observations from a gamma distribution, and its
mean and variance were estimated (Ji=.ll, a2=
.00 18). Figure 2 provides a histogram of the esti-
mated J.;'s as well as a histogram of the predicted
number of Xi's assuming they follow a gamma distri-
bution. A Pearson chi-squared test (Lj (OJ - Ei)2/EJ
obtains a value of about 20 on 16 df. A gamma
mixing distribution, it appears, is not an unreason-
able assumption for the )';,s.

Next, the gamma mixture of Weibull's model was
estimated. Table 4 presents the parameter estimates.
Whereas a2 is significantly different from 0 using
either a likelihood ratio or a Wald test, the estimate
of y = .772 is quite similar to the estimate based on

.764

-.0059

.216

.039

-.217
.011

-5,442.1

.023

.0020

.078

.035

.033
003
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Table 4. Maximum Likelihood Estimates for the
Weibufl Mixture

Standard
Variable Parameter error

/l .112 .011
(12 .00073 .00030
y .772 .015

Days since repair - .0037 .0022

First "on" since repair .223 .078
On-off cycles per day .046 .036

Calendar year - .149 .044

Cumulative failures .0026 .0039

Log-likelihood -5.431.7

the Weibull regression model. There appears to be a
decreasing hazard on the time-since-energized, as
well as heterogeneity across units. The other parame-
ter estimates change somewhat from their previous
values. In particular, only the first "on" since repair
and calendar year remains significant at the .05 level.
Perhaps the decreasing hazard on days since repair
in the simple WeibulI regression was partialIy due to

heterogeneity.
An important question is whether the estimated

parameters y and 82 are correlated. Both parameter
estimates are significantly different from, respectively,
1.0 and .0; however, a high positive correlation might
indicate that it is difficult to distinguish between het-
erogeneity and a decreasing hazard. A high corre-
lation would indicate a ridge on the likelihood sur-

U.o

Srt(tijlJ.)] 0.5

0.4

0.3

0.2

0.1 of+-
+

0.0 +
I . I . I

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

t(tijll)

FigurB 3. Kaplan -MBiBr Survival CurvB of the Generalized Residuals Under the Weibull Mixture Model If the model fits. the
generalizBd residuals. (f:(t ,;Ii,), d,)'s. should behave likB a random sample from a uniform (0. 1) distribution. Therefore, the Kap/an-

MeierestimatB should fo//owa line connecting (1,0) to (0,1) if the Weibull mixture model fits the data.
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face and values of y less than 1.0 and (12 small would
be supported by the data about as well as values of
y = 1.0 and (12 large. The interpretations for the two

views, however, are quite different. In fact, the esti-
mated correlation is -.05, which is close to 0 and
negative.

The overall fit of the gamma mixture of Weibulls
can be examined using a Kaplan-Meier estimate of
the generalized residuals-that is, a Kaplan-Meier
estimate treating the (F(tij I J.J, dJ's as data from a
distribution. Figure 3 displays this estimate. Recall
that a line connecting (1, 0) and (0, 1) indicates a
reasonable fit, and it appears that the fit of the Wei-
bull mixture is adequate.

To test the proportional-hazard-rate assumption,
we stratify the sample based on the value of each
explanatory variable in turn. The proportional-
hazard-rate assumption is valid if the hazard func-
tions in each subsample are proportional as functions
of time; that is, they have approximately the same
value of the shape parameter, y. Table 5 reports the
results of this test. Since for each stratification the
estimated y's plus or minus their standard error over-
lap, the proportional-hazard-rate assumption re-
ceives some empirical support.

An important practical application of the model,
given that it has been empirically validated, is to
interpret y. Qualitatively, on-off cycling appears
harmful because each time the system is energized,
there is a high initial chance of failure. The effect of a
decreasing hazard on time-since-energized can be

0.30.2 0.40.0 0.1
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Table 5. Maximum Likelihood Estimates by Strata

Value Standard Sample
Variable range i' error size

Days since repair < 1 0 .759 ,02 3,910
> 1 0 .786 .03 2,109

First "on" since repair 0 .757 .02 4,135
1 .762 .02 1.884

On-off cycles per day < 1 .775 .02 4,250
> 1 .739 .03 1,769

Calendar year 80-82 .758 .02 3.380
83-85 .773 .03 2,339

Cumulative failures <20 .755 ,02 3,420
> 20 .779 .02 2,599

quantified by use of the following simple scenario.
Suppose that during a four-week period the radar
needs to be continuously on, except for 28 hours of
preventive maintenance (PM) performed while the
radar is off. Suppose also that the machine was re-
paired just prior to this four-week period. The year is
1985, and the machine has had 10 cumulative fail-
ures. Two PM programs are considered; once every
day for an hour or once every other day for two
hours. The probability of no failure over the four-
week period is .24 for daily PM and .29 for bidaily
PM. The difference in estimated probabilities, al-
thought slight, suggests that bidaily PM is preferred.
In general, it is probably worthwhile for the Navy to
turn this radar on and off less often where possible.

7. CONCLUSIONS

Heterogeneity across repairable units can cause an
apparent decreasing hazard rate. The distinction be-
tween heterogeneity and a true decreasing hazard
rate is important, because quite different conclusions
follow regarding the risk of failure following repair.
To sort out these separate effects, a statistical model
was developed that allows for both. The model is
applicable for data where a collection of units gener-
ates several failure times and where the failure rates
may vary across units. The model was applied to two
data sets where, respectively, a decreasing hazard
rate was solely due to heterogeneity and both a de-
creasing hazard rate and heterogeneity were present.
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